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ABSTRACT

This paper deals with the trajectory tracking control problem for electrically driven 
redundant robot manipulators. By combining actuator dynamics with manipulator’s 
kinematics and dynamics, a novel control scheme is proposed for the electromechanical 
system. In this electromechanical system, the controller is designed at the dynamic level 
as well as at the actuator level.  In the proposed control scheme, uncertain non-linear 
mechanical dynamics is approximated with the model-based controller combined with the 
model-free radial basis function neural network based controller together with adaptive 
bound. The behaviour of the uncertain electrical dynamics is approximated with the help of 
a radial basis function neural network. The designed controller achieves both the trajectory 
tracking and the subtask tracking effectively. Additionally, the designed control scheme 
controls the direct current motors being used to provide the desired currents and torques. 
The errors are shown to be asymptotically converging and the control scheme is shown to 
be stable using Lyapunov stability theory. Finally, the simulation results are produced for 
the rigid link electrically driven redundant robot manipulators to show the effectiveness 
of the proposed control scheme.

Keywords: Actuator dynamics, lyapunov stability, radial basis function neural network, redundant manipulators, 

subtask tracking 

INTRODUCTION

Due to the sufficient degree of freedom in 
their end-effector’s task space, kinematically 
redundant manipulators has been the main 
subject of study by many researchers (Hsu 
et al., 1989; Zergeroglu et al., 2004). The 
availability of the extra degree of freedom of 
redundant manipulators provides an infinite 
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number of motion solutions. In addition, the workspace of redundant manipulators can be 
increased by the presence of the joint limits. Redundant manipulators are widely utilized 
in the International Space Station, undersea etc. 

Much research has been carried out on the trajectory tracking control of redundant 
robot manipulators. Moreover, most of the advanced control schemes have been delineated 
at the torque input level and the mechanics related to their joint actuators like electrical 
effects have been ignored. It has been observed by numerous researchers that the harmful 
consequences are blocking the high-level trajectory tracking performance and the motion 
development of the controller (Dawson et al., 1992; Chen et al., 1998). Therefore, 
supplementary advancements can be achieved by including the significance of the actuator 
mechanics in the control system.

For the high-level trajectory tracking performance of the rigid-link electrically driven 
manipulators and the redundant manipulators, a lot of progressive methods depend upon 
the full dynamic model of the manipulator in which the whole electro-mechanical system is 
assumed to be completely known. A new robust controller based on backstepping approach 
was reported for the trajectory tracking problem of the robot manipulator with actuator 
dynamics (Homayounzade et al., 2015; Soltanpour et al., 2012). A position adaptive control 
scheme with passivity techniques for two-link manipulator was developed (Azoui & Saidi, 
2011). For the high-speed trajectory tracking objectives, a feedback linearization technique 
based control scheme was also developed (Fateh, 2008). In order to deal with the structured 
and unstructured uncertainties, an adaptive nonlinear controller with backstepping scheme 
was developed (Khaligh & Namvar, 2010). In addition, for the task space trajectory 
tracking of the end-effector of the manipulator, two adaptive control laws named RV 
(reference velocity) and RVS (reference velocity separation) were developed (Perumal &  
Natarajan,  2017). An integrator backstepping technique was developed for the motion 
tracking control of the robot manipulator actuated by dc motors (Chang, 2002).  For the 
trajectory tracking in the operational space, an extended Jacobian method was used for 
the redundant robot manipulator (Benzaoui et al., 2010). The model based robust control 
schemes for the kinematically redundant robot manipulators were developed (Zergeroglu 
et al., 2006; Ozbay et al., 2008).

However, we observe that the above-mentioned control schemes have been worked 
out either by using conventional model-based control schemes or robust adaptive control 
schemes. Noticeably, the above model-based control schemes depend upon the exact 
information of the explicit parameters of the dynamic model and the performance of 
the designed control controller is diminished by the parametric uncertainties and the 
computation of the regression matrix, which further depends upon the structure of the 
system to be controlled and must be specified autonomously with the dynamics of the 
manipulator. 
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Therefore, for the solution of such type of problems, many of the control schemes focus 
on integrating the conventional control schemes with the intelligent technique based control 
schemes. In the present time, neural network-based technologies have been extensively 
used in many of the areas due to its parallel distributed structure, good learning capability, 
image processing and its property of approximation of any nonlinear function. Researchers 
have utilized model-free adaptive and robust control schemes for nonlinear systems via the 
neural network.  A hybrid approach was developed for the tracking problem of the robot 
manipulator with the actuator dynamics (Jiang, 2006). In this approach, PD controller was 
combined with neural network based controller and simulation results were performed 
on an industrial manipulator Adept One XL robot. An intelligent terminal sliding mode 
control scheme was developed for the tracking problem (Wang et al., 2009a & 2009b).  
In this scheme, the non-linear dynamics was approximated by the RBF neural network. 
A four-layer fuzzy neural network with projection algorithm was developed for the joint 
position control of a two-link robot (Wai & Chen, 2006).  By using the properties of the 
sliding mode controller, an intelligent control system for the high-level position tracking 
of the RLED manipulator was designed (Wai & Muthusamy, 2012). A Takagi-Sugeno-
Kang type fuzzy neural network control scheme was designed for the position control of 
two-link RLED manipulator (Wai & Chen, 2004). Based on the neural network technique, 
the trajectory tracking control scheme for the electrically driven dual robot manipulator 
was developed (Jafarian et al., 2006).  By using the backstepping method, neural network 
based feed-forward controller was developed (Shafiei & Soltanpour, 2009).  A discrete-time 
robust control scheme was proposed for the RLED robot manipulators in the task space 
(Fateh & Azargoshasb, 2015). For the obstacle avoidance and for the trajectory tracking of 
a redundant manipulator, a fuzzy adaptive control scheme was developed (Benzaoui et al., 
2016).  By using model-free feed forward neural network based controller, Kumar et al. 
(2011) and Singh et al. (2012) discussed the trajectory tracking problems of the redundant 
manipulator. Later on, a hybrid approach was generated for the tracking problem of the 
redundant manipulator by the combination of the computed torque controller and RBF 
neural network based controller (Kumar et al., 2012; Rani & Kumar, 2016). By considering 
the Lyapunov-Krasovskii functional for the RLED manipulator with time delays, a newly 
robust adaptive neural network based tracking control system was designed (Chang, 2014). 
An intelligent robust tracking control problem for one-link electrically-driven manipulator 
was considered (Chang et al., 2008; Huang et al., 2008). Based on backstepping scheme, 
an adaptive three- layer neural network-based controller was developed for the trajectory 
tracking control problem of the electrically driven manipulator (Cheng et al., 2009).  Table 
1 provides the overall description of the control schemes for the trajectory tracking.
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Table 1 
Description of the control schemes for the trajectory tracking

References Control Scheme Robot Manipulator
Chang, 2002 An integrator back stepping technique RLED Manipulator
Cheng et al., 2009 Adaptive three-layer neural network RLED Manipulator
Wai & Chen, 2004 Fuzzy  neural network control scheme RLED Manipulator
Jafarian et al., 2006 Neural network technique Dual robot manipulator
Wai & Chen, 2006 Four layer fuzzy neural network RLED Manipulator
Zergeroglu et al., 2006 Model-based robust control scheme Redundant Robot
Chang et al., 2008 Neural network based robust control scheme with 

time-delays
RLED Manipulator

Fateh, 2008 Feedback linearization technique RLED Manipulator
Ozbay et al. 2008 Model-based control scheme Redundant Robot     
Shafiei & Soltanpour, 
2009

Neural network based feed forward controller 
with backstepping approach

RLED Manipulator

Wang et al., 2009a & 
2009b 

An intelligent terminal sliding mode control 
scheme

RLED Manipulator

Benzaoui et al., 2010 Extended Jacobian method Redundant Robot
Khaligh & Namvar, 2010 An adaptive nonlinear controller with 

backstepping
RLED Manipulator  

Azoui &  Saidi, 2011 Adaptive control scheme with passivity 
techniques

Two-link manipulator

Kumar et al., 2012 CT controller with RBFNN Redundant Robot
Soltanpour et al., 2012 Backstepping approach RLED Manipulator
Wai & Muthusamy, 2012 An intelligent technique with sliding mode 

control
RLED manipulator

Chang, 2014 Neural network based robust adaptive control 
scheme with time-delays 

RLED Manipulator

Homayounzade et al., 
2015

Robust controller based  backstepping approach RLED Manipulator

Benzaoui et al., 2016 Fuzzy adaptive control scheme Redundant Robot
Rani & Kumar, 2016 Neural network based hybrid approach Redundant Manipulator
Perumal & Natarajan,  
2017

RV and RVS adaptive control laws Robot Manipulator

In our previous work, by utilizing the partial information available about the system 
dynamics, the model-based control scheme was successfully combined with RBF 
neural network based model-free technique for the trajectory tracking of the redundant 
manipulators (Rani & Kumar, 2016). However, the effects due to actuators dynamics 
were ignored. For the particular case of high-velocity movements and high varying loads, 
the ignorance of the actuator dynamics has adverse effects on the trajectory tracking and 
the motion performance of the manipulator. Specifically, to the best of our knowledge, 
no research has been reported on the trajectory tracking control problem of uncertain 
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electrically driven redundant robot manipulators considering the effects of the actuator 
dynamics.

 The novelty of the present study is the significance of the effect of inclusion of 
actuator dynamics with the manipulator’s dynamics for the large-scale trajectory tracking 
performance of the redundant manipulators. In the present study for the electromechanical 
system, the unknown mechanical dynamics is approximated with the model-based controller 
combined with the RBF neural network based model-free controller. The effects of 
uncertainties, external disturbances and the approximation error are effectively eliminated 
by using an adaptive compensator in the controller.  In order to approximate the behaviour 
of the unknown electrical dynamics, RBF neural network is employed. With the integration 
of the DC motor dynamics with the robot dynamics, the actuator input voltages are the 
control inputs that make the overall control system more balanced.

The overall paper is structured into eight sections as follows. The kinematics, dynamics 
of the redundant manipulators along with the actuator dynamics are detailed in Section 
2. Section 3 includes the error dynamics of the system. The structure of the radial basis 
function neural network is described in Section 4. Section 5 deals with the controller design 
at the dynamic level as well as at the actuator level. Stability analysis is detailed in Section 
6. Numerical simulation results are presented in Section 7 followed by the concluding 
observations in Section 8. 

SYSTEM DESCRIPTION

Kinematics of the Redundant Manipulator

With n link position variables q = [q1, q2, ..., qn]T and m task space variables z = [z1, 
z2, ..., zm]T of a robot manipulator, the relation between the variables z and q is defined as:

z = f (q)     [1]

where f (q) represents the kinematic transformation of a robot. The relationship 
between the joint variable velocities and accelerations with the end-effector velocities and 
accelerations are given as follows:

and

      [2]

where the manipulator’s Jacobian matrix  is given as

      [3]

The pseudo-inverse of J(q) is denoted by J+
 which is given as:

      [4]
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such that

JJ+ = Im      [5]

where Im denotes the identity matrix.
The matrix J(q) satisfies Moore-Penrose conditions (Kumar et al., 2012).

The Dynamic Model of Redundant Manipulator Plus Actuator Dynamics

By using the Lagrangian approach, the dynamic model of a n link, revolute direct drive 
robot manipulator is described as (Wai et al., 2004).

  [6]

where  denotes the inertia matrix,  is the centripetal-
coriolis matrix,  is the gravity effects,  represents the friction 
effects and  stands for the torque input vector. Td represents the bounded unknown 
disturbances.

The robot dynamics given in [6] has some useful properties as:
Property 1: The positive definite and symmetric matrix M(q) satisfies the following 
inequalities

     [7]

Property 2: The skew-symmetric relation between the inertia matrix and the 
centripetalcoriolis matrix satisfies

   [8]

The following useful assumptions are utilized in further analysis:
Assumption 1:  for some unknown constants b1 and b2
Assumption 2:  for some positive constant b3
Let each joint of the robot manipulator is driven by dc motor. The actuator dynamics 

is described as (Dawson et al., 1992)

    [9]

where  and

      [10]

where  represents the positive definite diagonal matrix of armature 
inductance,  is the diagonal matrix of resistance and motor back 
electromotive force. The electromechanical transformation between the current and the 
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torque is described by the motor torque constant matrix Km  R (n×n). The bounded voltage 
disturbance is Kd  Rn and U  Rn is the motor input voltage.

We assume that the torque transmission matrix and the inductance matrix satisfy the 
following relation.

and

where n1, n2, r1 and r2 all are bounded and positive scalar constants.

ERROR DYNAMICS

Under structured/unstructured uncertainties and external disturbances with the bounded 
desired trajectory tracking assumption, in this paper, we are to design RBF neural network 
based controller in such a way that it controls DC actuators, which will provide the desired 
control torque input so that the desired end-effector trajectory tracking can be achieved. In 
addition, the manipulator’s redundancy should be utilized to execute the desired subtask 
trajectory tracking error objective.

We define the tracking error e(t)  Rm for the task-space as

e(t) = zd – z        [11]

where zd  Rm is the desired task-space trajectory.
We define subtask tracking error eN  Rm similar to (Kumar et al., 2011), as

     [12]

Here the construction of the vector function g (.)  Rn  depends on the subtask 
objectives like obstacle avoidance and joint limit avoidance; however singularity avoidance 
should be its prior objective. Since vectors are mapped into the null space of J by (IN – J+J), 
therefore  tend to zero. Many of the authors have considered 
the different selection process of the null space joint velocity for the fulfillment of the main 
task objective along with the other subtasks. For the desired configuration for maximum 
use of the manipulability of the manipulator, we define the function . 
For the singularities avoidance, we select .

After the differentiation of Equation [11] and by using Equation [2] we get

   [13]

where  is a diagonal and positive definite gain matrix.
Now Equation [13] can be rewritten as
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   [14]

By using Equation [14] we define the filtered tracking error  as

     [15]

The task-space position tracking error is defined as:

       [16]

With the help of Equation [16], we design the control input so that the task space error 
and the filtered tracking error can be regulated. For this objective, we multiply Equation 
[15] by  and using the properties of pseudo-inverse of the manipulator, we get

       [17]

Here Equation [17] clearly indicates that the regulation of r(t) implies the regulation 
of .

RADIAL BASIS FUNCTION NEURAL NETWORK

Due to smooth network architecture and a good observation competence, RBF has taken 
much consideration, which averts the worthless and lengthy calculation. The structure of 
RBF is characterized in Figure 1 given below with:

Layer 1: This is the input layer in which input signal  directly move 
to the next layer.

Layer 2: The second layer is the hidden layer. Each and every neuron of hidden layer 
is stimulated by Radial Basis function. The hidden layer output is given 

     [18]

Figure 1.  Radial basis function neural network
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where p is the no. of hidden layers. The neural net j has the centre vector 
 the variance of the jth radial basis function and Yj denotes the 

Gaussian activation function for neural net j.
Layer 3:  In the third layer, the output signal is a combination of linear weights such as

     [19]

CONTROLLER DESIGN

Throughout the paper, the following assumptions are used.
Assumption 3:  and  all are the bounded functions of time.
Assumption 4: It is assumed that all the terms in the kinematic and dynamic system 

such  and  is bounded and all the kinematic singularities 
are always avoided.

Now, the dynamic equation in terms of the filtered tracking error can be written as:

    [20]

Where

         [21]
Let us consider the current I as a fictitious control signal for the error dynamics given 

by the Equation [20] and we call it Id  in such a way that  is the error signal.
We write the Equation [20] in the form:

  [22]

After the differentiation of the error signal and using Equation [9] with Equation [10], 
the resulting expression can be written in the form:

      [23]

      [24]

where H(y1) is a nonlinear function of  and I.
Now, we break the nonlinear function  into known dynamic part   and 

unknown dynamic part . The dynamic part  is completely unknown and the 
performance of this unknown dynamic part will be learned by the RBF neural network.

Here the vector y is given by
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The approximation of the unknown dynamic part is given by

     [25]

Where  is a neural network weight matrix and    
are the smooth basis functions. The neural reconstruction error is   
and the number of the nodes is N.

For large  
Substituting Equation [25] into Equation [22] we have:

         [26]

Adaptive Bound Part

By using error bound on neural network reconstruction error and the assumptions (1)          
and (2), we have

  [27]

We write ρ  and above calculation leads to:

  [28]

where  is a vector function of joint velocities  and  is a 
parameter vector.

Step 1:  For the desired objective, we design the auxiliary controller Id as

   [29]

Where  design constant > 0 and approximate values of the parameter 
vector and the neural network weights are  and  respectively, which are provided by 
the tuning algorithm.  is a positive definite  gain matrix.

After the substitution of Equation [29] into Equation [26], the error dynamics becomes:

         [30]
Step 2:  In this stage, we are to design the actual control input U in such a way that 

. However, the structure of the nonlinear term H(y1) is completely unknown and 
it includes  whose calculation is a tough task and therefore we will apply radial basis 
function neural network to learn the behaviour of the unknown terms in this function, we get

     [31]

where  is a neural network weight matrix and the smooth basis functions 
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are . The neural network reconstruction error is  and the number of nodes is N1.
Substituting  from Equation [31] into Equation [23], we have

    [32]

We choose the controller for the actual control input as

     [33]

where , is the approximation error for large N1 and by using adaptive 
bound part on bounded disturbances and on the neural network reconstruction error, we 
get  and .

By using Equation [33] into Equation [32], we have

  [34]

The block diagram of the proposed control scheme is shown in Figure 2.

Figure 2.  Block diagram of the proposed control scheme

STABILITY ANALYSIS

If the dynamics of the robot is given by Equation [6] and the control inputs given by 
Equation [30] and Equation [34], the adaptation laws are given by Equations [35] – [38], 
we are to show that the complete electromechanical system is stable and the filtered 
tracking error with task space error e(t), subtask tracking error eN(t) and error signal e1(t)  
asymptotically goes to zero as .

       [35]

      [36]

       [37]
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       [38]

where , ,  and   are the positive definite 
matrices.

Proof: Let us define
, and 

For the stability of the complete electromechanical system, let us assume the Lyapunov 
function as

 [39]
The differentiation of Lyapunov function with respect to time gives

    [40]
After simplification, the following expression is obtained

         [41]

By using the property (2) along with , , , , 
, and , the following expression is obtained

         [42]

Now,
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Using the above inequality, the above equation can be rewritten as:

         [43]
After simplification, we have

  [44]

Where  is the minimum eigen value of the matrix .

As E > 0 and , this means that the system is stable in the sense of Lyapunov and 
from this we conclude that , and  hence  and  are bounded. Now by using 
LaSalle’s extension, we can show that  and  go to zero as  .

Also

        [45]

The boundedness of  and  is ensured by the boundedness of . The 
boundedness of the desired trajectory implies that , ,  and  are bounded. From Equation 
[44] we have . Since ,  are bounded and all terms on the right side of 
Equation [30] and Equation [34] justify the boundedness of  and  and hence the 
uniform continuity of  is obtained. With time t,  goes to zero by Barbalat’s Lemma and 
this implies that ,  and e1(t)  goes to zero as . Finally, Equation [17] shows 
that eN(t) asymptotically goes to zero as .

NUMERICAL SIMULATION RESULTS AND DISCUSSION  

We execute simulation results on a 3R planar redundant robot manipulator, which is actuated 
by DC motors (shown in Figure 3). The details of the dynamical model can be referred to 
(Singh and Sukavanam, 2012).

The parameters for the electromechanical system are taken as L=diag (5, 5, 5), R=diag 
(1, 1, 1). The joint angles are denoted q1, q2, and q3. The lengths for the links 1, 2 and 3 are 
l1=0.6 m, l2=0.4 m, l3=0.35 m respectively. The masses of the links are taken as m1=3.6 
kg; m2=2.6 kg and m3=2.0 kg. The motor torque constant matrix is Km=diag (2.0, 2.0, 2.0) 
; the designed gain matrix is Kd1 = diag (0.5, 0.5, 0.5), and the voltage constant matrix is 
kv =diag (0.2, 0.2, 0.2). The payload mass is chosen 1 kg. 

The friction terms are taken as .
The desired task-space trajectory is taken as:



Manju Rani and Naveen Kumar

1292 Pertanika J. Sci. & Technol. 27 (3): 1279 - 1300 (2019)

     [46]

The unknown disturbance terms are

      [47]

We have performed three sets of simulations with different subtask control vectors 
as:

In the first simulation case, we select  = 0.  For the maximization of the 
manipulability of the manipulator, in the second simulation case, we select

      [48]

In the third simulation case, we select . 
The above-mentioned vector function  is the negative gradient of the function

     [49]

The control gains are taken as α = diag (5, 10) and K1 = diag (100, 100,100).
The RBF neural network is composed of 5 nodes. For the Gaussians functions, the 

central positions are chosen from -2 to 2 and σi, the spread factors are taken to be 0.2. 
 and  are the positive definite matrices. The parameter matrices are    

and . The trajectory tracking, task space tracking error and the subtask tracking 
errors are shown in the Figures 4-6 for the first, second and the third simulation cases 
respectively. These figures indicate that a satisfactory trajectory tracking, asymptotically 

Figure 3. 3R planar direct-drive redundant manipulator actuated by brushed DC motor
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convergent tracking error and the subtask tracking error has been achieved with a very 
small steady state error. The responses of the armature currents, control torque inputs and 
applied voltages are shown in the Figures 7-9 for the first, second and third simulation 
cases. The rated currents and the rated voltages for the three different simulation cases are 
shown in Table 2.

Table 2
The rated currents and the rated voltages

Links
Current Voltage Current Voltage Current Voltage

Link 1 5.9 A 70 V 5.9 A 60 V 5.7 A 75 A
Link 2 1.8 A 60 V 1.8 A 40 V 1.6 A 50 A
Link 3 2.0 A 65 V 2.0 A 35 V 2.2 A 40 A

From Table 2, it is clear that the proposed control scheme has achieved robustness to 
the parameter variations in both the manipulator and the motor.

Figure 4. The performance of the proposed controller for simulation case 1 with (a) Trajectory tracking, (b) 
Task space tracking error, and (c) Subtask tracking error.

(a) (b)

(c)
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Figure 5. The performance of the proposed controller 
for simulation case 2 with (a) Trajectory tracking, (b) 
Task space tracking error, and (c) Subtask tracking 
error

Figure 6. The performance of the proposed controller 
for simulation case 3 with (a) Trajectory tracking, (b) 
Task space tracking error, and (c) Subtask tracking 
error

(a)

(b)

(c)

(a)

(b)

(c)
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Figure 7. The performance of the proposed controller 
for simulation case 1 with (a) Armature current I(t), 
(b) Control torque input, and (c) Input voltage U(t)

Figure 8. The performance of the proposed controller 
for simulation case 2 with (a) Armature current I(t), 
(b) Control torque input, and (c) Input voltage U(t)

(a)

(b)

(c)

(a)

(b)

(c)
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For the measurement of the root mean square (the average of the tracking error), we 
will apply scalar valued L2 norm for the complete curve and it is given by

    [50]
                     

where the initial and the final values of the time are . To the best of our 
knowledge, no research has been reported on the trajectory tracking control problem of 
uncertain electrically driven redundant robot manipulators. However, for the comparison 
purpose, we have calculated the root mean square average of the tracking errors with 
existing approach without including the effects of the actuator dynamics (Rani & Kumar, 
2016). The calculated values are shown in Table 3 for the proposed controller and Rani 
& Kumar (2016) controller respectively. From these tables, it is clear that the root mean 
square error (RMSE) of employing actuator dynamics is much less in comparison to the 
other existing approach without including the effects of the actuator dynamics.

Figure 9. The performance of the proposed controller for simulation case 3 with (a) Armature current I(t), 
(b) Control torque input, and (c) Input voltage U(t)

(a) (b)

(c)



An intelligent Tracking Control Scheme

1297Pertanika J. Sci. & Technol. 27 (3): 1279 - 1300 (2019)

Table 3
RMS Average of the Tracking Error

Vector
Functions

Proposed controller Rani & Kuman, 2016 Proposed controller Rani & Kumar, 2016
0.0354 0.5849 0.0323 0.8532
0.0263 0.7483 0.0222 1.1624
0.0298 0.6997 0.0279 1.0503

Hence, the validity of the proposed controller has been proven by the fact that all 
the existing uncertainties and external disturbances have been diminished in the RLED 
redundant manipulators and the satisfactory tracking of the currents, trajectory tracking, 
and convergent tracking errors have been achieved.

CONCLUSION

This paper discusses the trajectory tracking control problem for the RLED redundant robot 
manipulators. Although the tracking problem of the redundant robot manipulators has been 
enthusiastically studied, however there is almost no research on the trajectory tracking of the 
RLED redundant robot manipulators.  Due to the inclusion of the actuator dynamics with 
the robot dynamics, the controller exhibits some important characteristics. In this paper, 
for the approximation of the unknown non-linear mechanical dynamics, a model-based 
controller has been combined with the model-free radial basis function neural network 
based controller. The friction term, external disturbances and neural network reconstruction 
error are approximated by an adaptive bound part of the controller. The behaviour of the 
unknown electrical dynamics is approximated with the help of RBF neural network. The 
superiority of the proposed control scheme has been verified by the numerical simulation 
results. These results indicate that the incorporated controller has satisfactory performance 
in dealing with the external disturbances and the motor parameter uncertainties.
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LIST OF ABBREVIATIONS AND SYMBOLS
L2[e(t)] Root mean square error
m Number of task space variables
n Number of link position variable
r The filtered tracking error
RBFNN Radial basis function neural 

network 
RLED Rigid-link electrically driven   

b1, b2, b3 Positive constants
CT controller Computed torque controller
DC motors Direct current motors
e(t) Task space tracking error
e1(t) Current error signal
eN(t) Subtask tracking error
J(q) The Jacobian matrix
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